Answer:
1) [tex] y(t) = \frac{Ce^{4t} +3}{4}[/tex]
2) [tex] 5 = \frac{C e^0 +3}{4}[/tex]
[tex] 20 = C +3[/tex]
[tex] C= 20-3=17[/tex]
So then the model would be given by:
[tex] y(t) = \frac{20e^{4t} +3}{4}[/tex]
Step-by-step explanation:
For this case we have the following differential equation:
[tex] y' = \frac{dy}{dt} = 4y-3[/tex]
We can do this using algebra:
[tex] \frac{dy}{4y-3} = dt[/tex]
Part 1
And now we can integrate both sides like this:
[tex] \int \frac{dy}{4y-3} = \int dt[/tex]
We can use the u substituton for the left part [tex] u = 4y-3[/tex] [tex] du = 4 dy[/tex]
[tex] \frac{1}{4} \int\frac{du}{u} = t+ c[/tex]
We can multiply both sides by 4 and we got:
[tex] \int\frac{du}{4} = 4t+ 4k = 4t+ c[/tex], where [tex] c=4k[/tex]
and after integrate the left part we got:
[tex] ln |u| = 4t+c[/tex]
And if we apply exponential on both sides we got:
[tex] u = e^{4t} e^c[/tex]
Now we can replace u and we got:
[tex] 4y-3 = Ce^{4t}[/tex] where [tex]C=e^c[/tex]
And then finally we have:
[tex] y(t) = \frac{Ce^{4t} +3}{4}[/tex]
Part 2
For this case we have the initial condition y(0) =5 and if we use it we got:
[tex] 5 = \frac{C e^0 +3}{4}[/tex]
[tex] 20 = C +3[/tex]
[tex] C= 20-3=17[/tex]
So then the model would be given by:
[tex] y(t) =\frac{17te^{4t} +3}{4}[/tex]