Assuming 100% dissociation, calculate the freezing point ( T f ) and boiling point ( T b ) of 2.40 m Na 2 SO 4 ( aq ) . Colligative constants can be found in the chempendix.

Respuesta :

Answer: The freezing point of the solution is [tex]-13.4^0C[/tex]

The boiling point of the solution is [tex]103.7^0C[/tex]

Explanation:

Depression in freezing point is given by:

[tex]\Delta T_f=i\times K_f\times m[/tex]

[tex]\Delta T_f=T_f^0-T_f=(0-T_f)^0C[/tex] = Depression in freezing point

i= vant hoff factor = 3 (for electrolyte undergoing complete dissociation, i is equal to the number of ions produced)

[tex]Na_2SO_4\rightarrow 2Na^++SO_4^{2-}[/tex]

[tex]K_f[/tex] = freezing point constant = [tex]1.86^0C/m[/tex]

m= molality = 2.40 m

[tex](0-T_f)^0C=3\times 1.86\times 2.40[/tex]

[tex]T_f=-13.4^0C[/tex]

Thus the freezing point of the solution is [tex]-13.4^0C[/tex]

Elevation in boiling point is given by:

[tex]\Delta T_b=i\times K_b\times m[/tex]

[tex]\Delta T_b=T_b-T_b^0=(T_b-100)^0C[/tex] = Elevation in boiling point

i= vant hoff factor = 3 (number of ions an electrolyte produce on complete dissociation)

[tex]Na_2SO_4\rightarrow 2Na^++SO_4^{2-}[/tex]

[tex]K_f[/tex] = freezing point constant = [tex]0.512^0C/m[/tex]

m= molality

[tex](T_b-100)^0C=3\times 0.512\times 2.40[/tex]

[tex]T_b=103.7^0C[/tex]

Thus the boiling point of the solution is [tex]103.7^0C[/tex]

ACCESS MORE
EDU ACCESS