Answer:
The correct option is -3.
Therefore
[tex]\dfrac{2}{3}\times \sqrt{81} -\sqrt[3]{-27}-\dfrac{4}{3}\times \sqrt[3]{729} = -3[/tex]
Step-by-step explanation:
Evaluate:
[tex]\dfrac{2}{3}\times \sqrt{81} -\sqrt[3]{-27}-\dfrac{4}{3}\times \sqrt[3]{729} = ?[/tex]
Solution:
We Know that Square root and Cube root is given by
[tex]\sqrt{x\times x}=x....................Square\ Rooting\\\\and\\\\\sqrt[3]{x\times x\times x}=x............ Cube\ Rooting[/tex]
Also
[tex]\sqrt[3]{-x\times -x\times -x} =-x[/tex]
Therefore,
[tex]\sqrt{81}=\sqrt{9\times 9} =9\\\\\sqrt[3]{-27}=\sqrt[3]{-3\times -3\times -3}=-3\\\\\sqrt[3]{729}=\sqrt[3]{9\times 9\times 9}=9[/tex]
Substituting the values we get
[tex]\dfrac{2}{3}\times 9 -(-3)-\dfrac{4}{3}\times 9\\\\2\times 3+3-12\\\\9-12\\\\-3[/tex]
Therefore
[tex]\dfrac{2}{3}\times \sqrt{81} -\sqrt[3]{-27}-\dfrac{4}{3}\times \sqrt[3]{729} = -3[/tex]