Respuesta :
Answer:
a) [tex] w_1 = \frac{-2.156 -\sqrt{2.156^2 -4(0.1)(-183)}}{2*0.1}=-54.896[/tex]
[tex] w_2 = \frac{-2.156 +\sqrt{2.156^2 -4(0.1)(-183)}}{2*0.1}=33.336[/tex]
And since the power can't be negative then the solution would be w = 33.34 watts.
b) [tex] 202= 0.1w^2 +2.156 w +20[/tex]
[tex] 0.1w^2 +2.156 w-182=[/tex]
[tex] w_2 = \frac{-2.156 +\sqrt{2.156^2 -4(0.1)(-182)}}{2*0.1}=33.222[/tex]
[tex] 204= 0.1w^2 +2.156 w +20[/tex]
[tex] 0.1w^2 +2.156 w-184=[/tex]
[tex] w_2 = \frac{-2.156 +\sqrt{2.156^2 -4(0.1)(-184)}}{2*0.1}=33.449[/tex]
So then the range of voltage would be between 33.22 W and 33.45 W.
c)For this case [tex]\epsilon = \pm 1[/tex] since that's the tolerance 1C
d) [tex] \delta_1 =|33.222-33.336|=0.116[/tex]
[tex] \delta_2 =|33.449-33.336|=0.113[/tex]
So then we select the smalles value on this case [tex] \delta =0.113[/tex]
e) For this case if we assume a tolerance of [tex]\epsilon=\pm 1C[/tex] for the temperature and a tolerance for the power input [tex] \delta =0.113[/tex] we see that:
[tex] lim_{x \to a} f(x) =L[/tex]
Where a = 33.34 W, f(x) represent the temperature, x represent the input power and L = 203C
Step-by-step explanation:
For this case we have the following function
[tex] T(w)= 0.1 w^2 +2.156 w +20[/tex]
Where T represent the temperature in Celsius and w the power input in watts.
Part a
For this case we need to find the value of w that makes the temperature 203C, so we can set the following equation:
[tex] 203= 0.1w^2 +2.156 w +20[/tex]
And we can rewrite the expression like this:
[tex] 0.1w^2 +2.156 w-183=[/tex]
And we can solve this using the quadratic formula given by:
[tex] w =\frac{-b \pm \sqrt{b^2 -4ac}}{2a}[/tex]
Where a =0.1, b =2.156 and c=-183. If we replace we got:
[tex] w_1 = \frac{-2.156 -\sqrt{2.156^2 -4(0.1)(-183)}}{2*0.1}=-54.896[/tex]
[tex] w_2 = \frac{-2.156 +\sqrt{2.156^2 -4(0.1)(-183)}}{2*0.1}=33.336[/tex]
And since the power can't be negative then the solution would be w = 33.34 watts.
Part b
For this case we can find the values of w for the temperatures 203-1= 202C and 203+1 = 204 C. And we got this:
[tex] 202= 0.1w^2 +2.156 w +20[/tex]
[tex] 0.1w^2 +2.156 w-182=[/tex]
[tex] w_2 = \frac{-2.156 +\sqrt{2.156^2 -4(0.1)(-182)}}{2*0.1}=33.222[/tex]
[tex] 204= 0.1w^2 +2.156 w +20[/tex]
[tex] 0.1w^2 +2.156 w-184=[/tex]
[tex] w_2 = \frac{-2.156 +\sqrt{2.156^2 -4(0.1)(-184)}}{2*0.1}=33.449[/tex]
So then the range of voltage would be between 33.22 W and 33.45 W.
Part c
For this case [tex]\epsilon = \pm 1[/tex] since that's the tolerance 1C
Part d
For this case we can do this:
[tex] \delta_1 =|33.222-33.336|=0.116[/tex]
[tex] \delta_2 =|33.449-33.336|=0.113[/tex]
So then we select the smallest value on this case [tex] \delta =0.113[/tex]
Part e
For this case if we assume a tolerance of [tex]\epsilon=\pm 1C[/tex] for the temperature and a tolerance for the power input [tex] \delta =0.113[/tex] we see that:
[tex] lim_{x \to a} f(x) =L[/tex]
Where a = 33.34 W, f(x) represent the temperature, x represent the input power and L = 203C