Respuesta :
Answer:
The equivalent expression to [tex](k\circ h)(x)[/tex] is [tex]\frac{1}{5+x}[/tex]
Therefore [tex](k\circ h)(x)=\frac{1}{5+x}[/tex]
Step-by-step explanation:
Given that the functions h is defined by h(x)=5+x
and k is defined by [tex]k(x)=\frac{1}{x}[/tex]
To find the composition of k and h that is [tex](k\circ h)(x)[/tex] :
[tex](k\circ h)(x)=k(h(x))[/tex]
[tex]=k(5+x)[/tex]
[tex]=\frac{1}{5+x}[/tex]
Therefore [tex](k\circ h)(x)=\frac{1}{5+x}[/tex]
The equivalent expression to [tex](k\circ h)(x)[/tex] is [tex]\frac{1}{5+x}[/tex]