Respuesta :

Answer:

The equivalent expression to  [tex](k\circ h)(x)[/tex] is [tex]\frac{1}{5+x}[/tex]

Therefore  [tex](k\circ h)(x)=\frac{1}{5+x}[/tex]

Step-by-step explanation:

Given that the functions h is defined by h(x)=5+x

and k is defined by [tex]k(x)=\frac{1}{x}[/tex]

To find the composition of k and h that is  [tex](k\circ h)(x)[/tex] :

[tex](k\circ h)(x)=k(h(x))[/tex]

[tex]=k(5+x)[/tex]

[tex]=\frac{1}{5+x}[/tex]

Therefore  [tex](k\circ h)(x)=\frac{1}{5+x}[/tex]

The equivalent expression to  [tex](k\circ h)(x)[/tex] is [tex]\frac{1}{5+x}[/tex]

Answer:

The answer is B

Step-by-step explanation:

ACCESS MORE
EDU ACCESS
Universidad de Mexico