Answer: The energy released in the decay process is [tex]4.6800\times 10^{11}J[/tex]
Explanation:
The equation for the alpha decay of Ra-226 follows:
[tex]_{88}^{226}\textrm{Ra}\rightarrow _{2}^{4}\textrm{He}+_{86}^{222}\textrm{Rn}[/tex]
To calculate the mass defect, we use the equation:
Mass defect = Sum of mass of product - Sum of mass of reactant
[tex]\Delta m=(m_{Rn}+m_{He})-(m_{Ra})[/tex]
We know that:
[tex]m_{Rn}=222.0176u\\m_{Ra}=226.0254u\\m_{He}=4.0026u[/tex]
Putting values in above equation, we get:
[tex]\Delta m=(222.0176+4.0026)-(226.0254)=-0.0052g=-5.2\times 10^{-6}kg[/tex]
(Conversion factor: 1 kg = 1000 g )
To calculate the energy released, we use Einstein equation, which is:
[tex]E=\Delta mc^2[/tex]
[tex]E=(-5.2\times 10^{-6}kg)\times (3\times 10^8m/s)^2[/tex]
[tex]E=-4.6800\times 10^{11}J[/tex]
Hence, the energy released in the decay process is [tex]4.6800\times 10^{11}J[/tex]