Answer:
Yes
Step-by-step explanation:
A vector is a quantity that has magnitude and direction.
We say that a vector u spans vectors v, w if u = av + bw where a and b are scalars.
Given:
[tex]a_1=\left ( -1, 3 ,-1 \right ),a_2=\left ( -2, -3, 6 \right ),b=\left ( -6, 9, 2 \right )[/tex]
We need to write vector b as a linear combination of vectors [tex]a_1,a_2[/tex].
Let c and d be scalars.
[tex]b=ca_1+da_2\\\left ( -6, 9, 2 \right )=c\left ( -1, 3 ,-1 \right )+d\left ( -2, -3, 6 \right )\\\left ( -6, 9, 2 \right )=\left ( -c-2d,3c-3d,-c+6d \right )\\-6=-c-2d\,\,...(i)\,,\,9=3c-3d\,\,...(ii)\,,\,2=-c+6d\,\,...(iii)b=ca_1+da_2[/tex]
On solving equations (i) and (ii), we get [tex]c=4\,,\,d=1[/tex]
Now, we will check if [tex]c=4\,,\,d=1[/tex] satisfy equation (iii).
[tex]-c+6d=-4+6(1)=-4+6=2[/tex]
As it satisfy this equation, so b is a linear combination of [tex]a_1,a_2[/tex]