Answer:
a) 0.004
b) 0.9609
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 76503
Standard Deviation, σ = 8850
We are given that the distribution of annual salaries is a bell shaped distribution that is a normal distribution.
Formula:
[tex]z_{score} = \displaystyle\frac{x-\mu}{\sigma}[/tex]
a) P(salary greater than 100,000)
P(x > 100000)
[tex]P( x > 100000) = P( z > \displaystyle\frac{100000 - 76503}{8850}) = P(z > 2.655)[/tex]
[tex]= 1 - P(z \leq 2.655)[/tex]
Calculation the value from standard normal z table, we have,
[tex]P(x > 100000) = 1 - 0.996 = 0.004 = 0.4\%[/tex]
b) P(sample mean annual salary falls between 70,000 and 80,000 dollars)
Sample size, n = 20
Standard error due to sampling =
[tex]\dfrac{\sigma}{\sqrt{n}} = \dfrac{8850}{\sqrt{20}} = 1978.92[/tex]
[tex]P(70000 \leq x \leq 80000) = P(\displaystyle\frac{70000 - 76503}{1978.92} \leq z \leq \displaystyle\frac{80000-76503}{1978.92})\\\\ = P(-3.286 \leq z \leq 1.767)\\\\= P(z \leq 1.767) - P(z < -3.286)\\=0.9614 - 0.0005= 0.9609 = 96.09\%[/tex]
[tex]P(70000 \leq x \leq 80000) = 96.09\%[/tex]