Answer with Step-by-step explanation:
We are given that displacement of wave
[tex]y=1.5cos(0.68x+37t)[/tex]
Where y in cm and t in sec.
a.Compare it with
[tex]y=Acos(kx+\omega t)[/tex]
Amplitude of wave=A
We get A=1.5
Amplitude=A=1.5 cm
b.k=0.68
[tex]\frac{2\pi}{\lambda}=0.68[/tex]
[tex]\lambda=\frac{2\times 3.14}{0.68}=9.2 cm[/tex]
Using [tex]\pi=3.14[/tex]
Wavelength of the wave=9.2 cm
c.Period=[tex]\frac{2\pi}{T}=\omega[/tex]
[tex]\frac{2\pi}{T}=37[/tex]
[tex]T=\frac{2\times 3.14}{37}=0.17 s[/tex]
The period of the wave=0.17 s
Speed of the wave=[tex]\nu \lambda=\frac{\lambda}{T}=\frac{9.2}{0.17}[/tex]
Speed of the wave=54.1 cm/s