Find (a) the amplitude, (b) the wavelength, (c) the period, and (d) the speed of a wave whose displacement is given by y= 1.5 cos( 0.68 x+ 37 t), where x and y are in cm and t is in seconds.

Respuesta :

Answer with Step-by-step explanation:

We are given that displacement of wave

[tex]y=1.5cos(0.68x+37t)[/tex]

Where y in cm  and t in sec.

a.Compare it with

[tex]y=Acos(kx+\omega t)[/tex]

Amplitude of wave=A

We get A=1.5

Amplitude=A=1.5  cm

b.k=0.68

[tex]\frac{2\pi}{\lambda}=0.68[/tex]

[tex]\lambda=\frac{2\times 3.14}{0.68}=9.2 cm[/tex]

Using [tex]\pi=3.14[/tex]

Wavelength of the wave=9.2 cm

c.Period=[tex]\frac{2\pi}{T}=\omega[/tex]

[tex]\frac{2\pi}{T}=37[/tex]

[tex]T=\frac{2\times 3.14}{37}=0.17 s[/tex]

The period of the wave=0.17 s

Speed of the wave=[tex]\nu \lambda=\frac{\lambda}{T}=\frac{9.2}{0.17}[/tex]

Speed of the wave=54.1 cm/s

ACCESS MORE
EDU ACCESS
Universidad de Mexico