Respuesta :

The value of f'(2) is [tex]\dfrac{1}{2}[/tex].

Step-by-step explanation:

We have,

f(x) = [tex]\sqrt{2x}[/tex]

To find, the value of f'(2) = ?

∴ f(x) = [tex]\sqrt{2x}[/tex]

⇒  f(x) = [tex]\sqrt{2}\sqrt{x}[/tex]

⇒ f '(x) = [tex]\sqrt{2}.\dfrac{1}{2\sqrt{x} }[/tex]          ........ (1)

We know that,

y = [tex]\sqrt{x}[/tex][tex]\dfrac{dy}{dx}=\dfrac{1}{2\sqrt{x}}[/tex]

Put x = 2 in equation(1), we get

f '(2) = [tex]\sqrt{2}.\dfrac{1}{2\sqrt{2}}[/tex]

⇒ f '(2) = [tex]\dfrac{1}{2}[/tex]

The value of f'(2) = [tex]\dfrac{1}{2}[/tex]

Thus, the value of f'(2) is [tex]\dfrac{1}{2}[/tex].

The result of the function f'(x) is 1/2

Given the function

f(x)=√2x

This can also be written as:

f(x) = (2x)^1/2

Taking the derivative:

f'(x) = 1/2(2x)^-1/2 * 2

f'(x) = 1/(2x)^1/2

Substituting x = 2 into the expression:

f'(2) = 1/(2(2))^1/2

f'(2) = 1/√4

f'(2) = 1/2

Hence the result of the function f'(x) is 1/2

Learn more here: https://brainly.com/question/12047216

ACCESS MORE
EDU ACCESS