Step-by-step explanation:
We have,
U = F(r + B)
To find, the value of r = ?
∴ U = F(r + B)
Dividing both sides by F, we get
[tex]\dfrac{U }{F}=\dfrac{F(r+B) }{F}[/tex]
⇒ [tex]\dfrac{U }{F}[/tex] = r + B
⇒ r + B = [tex]\dfrac{U }{F}[/tex]
⇒ r = [tex]\dfrac{U }{F}[/tex] - B
⇒ r = [tex]\dfrac{U-FB}{F}[/tex]
∴ The value of r =[tex]\dfrac{U-FB}{F}[/tex]