Respuesta :

Answer:

Enrique's mistake is [tex]\frac{6.63\times 10^{-6}}{5.1\times 10^{-2}}[/tex][tex]=1.3\times (10^{-6}.10^{-2})[/tex]

The corrected step is [tex]\frac{6.63\times 10^{-6}}{5.1\times 10^{-2}}[/tex][tex]=1.3\times (10^{-6}.10^2)[/tex]

The simplified given expression is [tex]1.3\times 10^{-4}[/tex]

Therefore [tex]\frac{6.63\times 10^{-6}}{5.1\times 10^{-2}}=1.3\times 10^{-4}[/tex]

Step-by-step explanation:

Given expression is [tex]\frac{6.63\times 10^{-6}}{5.1\times 10^{-2}}[/tex]

To find Enrique's mistake and circle his mistake :

[tex]\frac{6.63\times 10^{-6}}{5.1\times 10^{-2}}[/tex]

[tex]=(\frac{6.63}{5.1})(\frac{10^{-6}}{10^{-2}})[/tex]

[tex]=1.3\times (10^{-6}.10^2)[/tex] ( using the property [tex]a^m=\frac{1}{a^{-m}}[/tex] )

[tex]=1.3\times 10^{-6+2}[/tex] ( using the property [tex]a^m.a^n=a^{m+n}[/tex] )

[tex]=1.3\times 10^{-4}[/tex]

[tex]\frac{6.63\times 10^{-6}}{5.1\times 10^{-2}}=1.3\times 10^{-4}[/tex]

Therefore the simplified given expression is [tex]1.3\times 10^{-4}[/tex]

Therefore [tex]\frac{6.63\times 10^{-6}}{5.1\times 10^{-2}}=1.3\times 10^{-4}[/tex]

Enrique's mistake is [tex]\frac{6.63\times 10^{-6}}{5.1\times 10^{-2}}[/tex][tex]=1.3\times (10^{-6}.10^{-2})[/tex]

The corrected step is [tex]\frac{6.63\times 10^{-6}}{5.1\times 10^{-2}}[/tex][tex]=1.3\times (10^{-6}.10^2)[/tex]

ACCESS MORE
EDU ACCESS