Enrique is finding 6.63 x 10^-6/5.1 x 10^-2. Circle his mistake and correct it.

Answer:
Enrique's mistake is [tex]\frac{6.63\times 10^{-6}}{5.1\times 10^{-2}}[/tex][tex]=1.3\times (10^{-6}.10^{-2})[/tex]
The corrected step is [tex]\frac{6.63\times 10^{-6}}{5.1\times 10^{-2}}[/tex][tex]=1.3\times (10^{-6}.10^2)[/tex]
The simplified given expression is [tex]1.3\times 10^{-4}[/tex]
Therefore [tex]\frac{6.63\times 10^{-6}}{5.1\times 10^{-2}}=1.3\times 10^{-4}[/tex]
Step-by-step explanation:
Given expression is [tex]\frac{6.63\times 10^{-6}}{5.1\times 10^{-2}}[/tex]
To find Enrique's mistake and circle his mistake :
[tex]\frac{6.63\times 10^{-6}}{5.1\times 10^{-2}}[/tex]
[tex]=(\frac{6.63}{5.1})(\frac{10^{-6}}{10^{-2}})[/tex]
[tex]=1.3\times (10^{-6}.10^2)[/tex] ( using the property [tex]a^m=\frac{1}{a^{-m}}[/tex] )
[tex]=1.3\times 10^{-6+2}[/tex] ( using the property [tex]a^m.a^n=a^{m+n}[/tex] )
[tex]=1.3\times 10^{-4}[/tex]
[tex]\frac{6.63\times 10^{-6}}{5.1\times 10^{-2}}=1.3\times 10^{-4}[/tex]
Therefore the simplified given expression is [tex]1.3\times 10^{-4}[/tex]
Therefore [tex]\frac{6.63\times 10^{-6}}{5.1\times 10^{-2}}=1.3\times 10^{-4}[/tex]
Enrique's mistake is [tex]\frac{6.63\times 10^{-6}}{5.1\times 10^{-2}}[/tex][tex]=1.3\times (10^{-6}.10^{-2})[/tex]
The corrected step is [tex]\frac{6.63\times 10^{-6}}{5.1\times 10^{-2}}[/tex][tex]=1.3\times (10^{-6}.10^2)[/tex]