Answer:
Explanation:
Given
Mass of Pulley [tex]M=4.7\ kg[/tex]
radius of Pulley [tex]r=0.961\ m[/tex]
mass of bucket [tex]m=1.7\ kg[/tex]
Time period of fall [tex]t=2.7\ s[/tex]
Tension in the string is T
For bucket [tex]mg-T=ma-------1[/tex]
For Pulley Tension will provide Torque to rotate it
[tex]T\cdot r=I\itmes \alpha [/tex]
where I=moment of inertia
[tex]\alpha [/tex]=angular acceleration
r=radius of Pulley
assuming rolling [tex]a=\alpha \times r[/tex]
[tex]T\cdot r=\frac{Mr^2}{2}\cdot r[/tex]
[tex]T=\frac{Ma}{2}[/tex]
Substitute the value of Tension in equation 1
[tex]mg-\frac{Ma}{2}=ma[/tex]
[tex]a=\frac{mg}{m+0.5M}[/tex]
[tex]a=\frac{1.7\times 9.8}{1.7+0.5\cdot 4.7}[/tex]
[tex]a=4.11\ m/s^2[/tex]