Respuesta :

Answer:

(A) The slope of secant line is 18.

(B) The slope of secant line is h+16.

Step-by-step explanation:

(A)

The given function is

[tex]f(x)=x^2+6x[/tex]

At x=3,

[tex]f(3)=(3)^2+6(3)=27[/tex]

At x=9,

[tex]f(9)=(9)^2+6(9)=135[/tex]

The secant line joining (3,27) and (9,135). So, the slope of secant line is

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

[tex]m=\dfrac{135-27}{9-3}=18[/tex]

The slope of secant line is 18.

(B)

The given function is

[tex]f(x)=x^2+6x[/tex]

At x=5,

[tex]f(5)=(5)^2+6(5)=55[/tex]

At x=5+h,

[tex]f(5+h)=(5+h)^2+6(5+h)=h^2 + 16 h + 55[/tex]

The secant line joining (5,55) and [tex](5+h,h^2 + 16 h + 55)[/tex]. So, the slope of secant line is

[tex]m=\dfrac{h^2 + 16 h + 55-55}{5+h-5}[/tex]

[tex]m=\dfrac{h^2 + 16 h }{h}[/tex]

[tex]m=h+16[/tex]

The slope of secant line is h+16.

ACCESS MORE
EDU ACCESS
Universidad de Mexico