Answer:
(A) The slope of secant line is 18.
(B) The slope of secant line is h+16.
Step-by-step explanation:
(A)
The given function is
[tex]f(x)=x^2+6x[/tex]
At x=3,
[tex]f(3)=(3)^2+6(3)=27[/tex]
At x=9,
[tex]f(9)=(9)^2+6(9)=135[/tex]
The secant line joining (3,27) and (9,135). So, the slope of secant line is
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
[tex]m=\dfrac{135-27}{9-3}=18[/tex]
The slope of secant line is 18.
(B)
The given function is
[tex]f(x)=x^2+6x[/tex]
At x=5,
[tex]f(5)=(5)^2+6(5)=55[/tex]
At x=5+h,
[tex]f(5+h)=(5+h)^2+6(5+h)=h^2 + 16 h + 55[/tex]
The secant line joining (5,55) and [tex](5+h,h^2 + 16 h + 55)[/tex]. So, the slope of secant line is
[tex]m=\dfrac{h^2 + 16 h + 55-55}{5+h-5}[/tex]
[tex]m=\dfrac{h^2 + 16 h }{h}[/tex]
[tex]m=h+16[/tex]
The slope of secant line is h+16.