Sophia’s work factoring a perfect square trinomial is [tex](4x+5)^{2}.[/tex]
Step-by-step explanation:
We have,
16[tex]x^2[/tex] – 40x + 25
= [tex](4x)^2[/tex] - 2(4x)(5) + [tex]5^{2}[/tex]
Using the algebraic identity,
[tex](a+b)^{2}=a^{2}+2ab+b^{2}[/tex]
= [tex](4x)^2[/tex] - 2(4x)(5) + [tex]5^{2}[/tex]
[tex]= (4x+5)^{2}[/tex] ≠ ([tex](x + 5)^2[/tex]
Thus, Sophia’s work factoring a perfect square trinomial is [tex](4x+5)^{2}.[/tex]