Answer:
The magnitude and algebraic sign of q is [tex]14\sqrt{2}\ \mu C[/tex]
Explanation:
Given that,
Point charge = -0.70 μC[/tex]
We need to calculate the force for all charges
The electric force at first corner
[tex]F_{1}=\dfrac{-k0.70\times10^{-6}q}{r^2}[/tex]
The electric force at opposite corner
[tex]F_{3}=\dfrac{-k0.70\times10^{-6}q}{r^2}[/tex]
The net force is
[tex]F=\sqrt{F_{1}^2+F_{2}^2}[/tex]
Put the value into the formula
[tex]F=\sqrt{(\dfrac{-k0.70\times10^{-6}q}{r^2})^2+(\dfrac{-k0.70\times10^{-6}q}{r^2})^2}[/tex]
The electric force at second corner
[tex]F_{2}=\dfrac{-kq^2}{2r^2}[/tex]
The net force acting on either of the charges is zero.
So, [tex]F=F'[/tex]
[tex]\sqrt{(\dfrac{k0.70\times10^{-6}q}{r^2})^2+(\dfrac{-k0.70\times10^{-6}q}{r^2})^2}=\dfrac{kq^2}{2r^2}[/tex]
[tex]\sqrt{2}\times\dfrac{0.70\times10^{-6}kq}{r^2}=\dfrac{kq^2}{2r^2}[/tex]
[tex]q=14\sqrt{2}\ \mu C[/tex]
Hence, The magnitude and algebraic sign of q is [tex]14\sqrt{2}\ \mu C[/tex]