Answer:
(a). The height of the cliff is 41.67 m.
(b). The maximum height of the ball is 41.67 m
(c). The ball's impact speed is 16.52 m/s.
Explanation:
Given that,
Speed = 33 m/s
Angle = 60°
Time = 3.0 sec
(a). We need to calculate the height of the cliff
Using equation of motion
[tex]h=ut-\dfrac{1}{2}gt^2[/tex]
[tex]h=(u\sin60)\times t-\dfrac{1}{2}gt^2[/tex]
Put the value into the formula
[tex]h=33\times\sin60\times3.0-\dfrac{1}{2}\times9.8\times(3.0)^2[/tex]
[tex]h=41.6\ m[/tex]
(b). We need to calculate the maximum height of the ball
Using formula of height
[tex]h_{max}=\dfrac{(u\sin\theta)^2}{2g}[/tex]
Put the value into the formula
[tex]h=\dfrac{(33\sin60)^2}{2\times 9.8}[/tex]
[tex]h=41.67\ m[/tex]
(c). We need to calculate the vertical component of velocity of ball
Using equation of motion
[tex]v=u-gt[/tex]
[tex]v=u\sin\theta-gt[/tex]
Put the value into the formula
[tex]v_{y}=33\times\sin 60-9.8\times3.0[/tex]
[tex]v_{y}=-0.82\ m/s[/tex]
We need to calculate the horizontal component of velocity of ball
Using formula of velocity
[tex]v_{x}=u\cos\theta[/tex]
Put the value into the formula
[tex]v_{x}=33\times\cos60[/tex]
[tex]v_{x}=16.5\ m/s[/tex]
We need to calculate the ball's impact speed
Using formula of velocity
[tex]v=\sqrt{v_{x}^2+v_{y}^2}[/tex]
Put the value into the formula
[tex]v=\sqrt{(16.5)^2+(-0.82)^2}[/tex]
[tex]v=16.52\ m/s[/tex]
Hence, (a). The height of the cliff is 41.67 m.
(b). The maximum height of the ball is 41.67 m
(c). The ball's impact speed is 16.52 m/s.