Respuesta :

Answer:

The correct option is C ) 109.5°

Therefore,

[tex]m\angle E=109.5\°[/tex]

Step-by-step explanation:

Given:

In Triangle DEF

d = 10

e = 18

f = 12

To Find

angle E = ?

Solution:

In Triangle DEF , Cosine Rule says

[tex]\cos E=\dfrac{f^{2}+d^{2}-e^{2}}{2fd}[/tex]

Substituting the values we get

[tex]\cos E=\dfrac{12^{2}+10^{2}-18^{2}}{2\times 12\times 10}[/tex]

[tex]\cos E=\dfrac{-80}{240}=-\dfrac{1}{3}[/tex]

Therefore,

[tex]\angle E=\cos^{-1}(-0.3333)[/tex]

[tex]m\angle E=109.5\°[/tex]       ............As it is in Second Quadrant

Therefore,

[tex]m\angle E=109.5\°[/tex]

ACCESS MORE
EDU ACCESS