Respuesta :
Answer:
[tex]5.75\times 10^{14}[/tex]Hz
Explanation:
We are given that
Wavelength of green light=522nm=[tex]522\times 10^{-9}m[/tex]
1nm=[tex]10^{-9} m[/tex]
We have to find the frequency of this radiation.
We know that
Velocity of light=[tex]3\times 10^8[/tex]m/s
[tex]\nu=\frac{c}{\lambda}[/tex]
Where [tex]\nu[/tex]=Frequency of radiation
c=Velocity of light
[tex]\lambda[/tex]=Wavelength of radiation
Using the formula
[tex]\nu=\frac{3\times 10^8}{522\times 10^{-9}}=5.75\times 10^{14}[/tex]Hz
Hence, the frequency of radiation=[tex]5.75\times 10^{14}[/tex]Hz
Answer:
Frequency of the radiation is [tex]5.747\times 10^{14}\ Hz[/tex]
Solution:
As per the question:
Wavelength, [tex]\lambda = 522\ nm = 522\times 10^{- 9}\ m[/tex]
Now,
To calculate the frequency of the radiation, use the relation:
[tex]c = \lambda f[/tex] (1)
where
c = speed of light in vacuum = [tex]3.0\times 10^{8}\ m/s[/tex]
f = frequency of the radiation
Use eqn (1):
[tex]f = \frac{c}{\lambda }[/tex]
[tex]f = \frac{3.0\times 10^{8}}{522\times 10^{- 9}}[/tex]
[tex]f = 5.747\times 10^{14}\ Hz[/tex]