Respuesta :

Answer:

[tex]5.75\times 10^{14}[/tex]Hz

Explanation:

We are given that

Wavelength of green light=522nm=[tex]522\times 10^{-9}m[/tex]

1nm=[tex]10^{-9} m[/tex]

We have to find the frequency of this radiation.

We know that

Velocity of light=[tex]3\times 10^8[/tex]m/s

[tex]\nu=\frac{c}{\lambda}[/tex]

Where [tex]\nu[/tex]=Frequency of radiation

c=Velocity of light

[tex]\lambda[/tex]=Wavelength of radiation

Using the formula

[tex]\nu=\frac{3\times 10^8}{522\times 10^{-9}}=5.75\times 10^{14}[/tex]Hz

Hence, the frequency of radiation=[tex]5.75\times 10^{14}[/tex]Hz

Answer:

Frequency of the radiation is [tex]5.747\times 10^{14}\ Hz[/tex]

Solution:

As per the question:

Wavelength, [tex]\lambda = 522\ nm = 522\times 10^{- 9}\ m[/tex]

Now,

To calculate the frequency of the radiation, use the relation:

[tex]c = \lambda f[/tex]                        (1)

where

c = speed of light in vacuum = [tex]3.0\times 10^{8}\ m/s[/tex]

f = frequency of the radiation

Use eqn (1):

[tex]f = \frac{c}{\lambda }[/tex]

[tex]f = \frac{3.0\times 10^{8}}{522\times 10^{- 9}}[/tex]

[tex]f = 5.747\times 10^{14}\ Hz[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico