Respuesta :
Answer
given,
radius of the circular orbit, r = 0.53 x 10⁻¹⁰ m
mass of electron, M = 9.11 x 10⁻³¹ Kg
charge of electron, q₁ = 1.6 x 10⁻¹⁹ C
q₂ = 1.6 x 10⁻¹⁹ C
we know, force between two charges
[tex]F = \dfrac{kq_1q_2}{r^2}[/tex]
[tex]F = \dfrac{9\times 10^9\times (1.6\times 10^{-19})^2}{(0.53\times 10^{-10})^2}[/tex]
F = 8.20 x 10⁻⁸ N
b) using newton's second law
F = m a
m a = 8.20 x 10⁻⁸
[tex]a =\dfrac{8.20\times 10^{-8}}{9.11\times 10^{-31}}[/tex]
a = 9 x 10²² m/s²
c) speed of the electron
[tex]a =\dfrac{v^2}{r}[/tex]
[tex]9\times 10^{22} =\dfrac{v^2}{0.53\times 10^{-10}}[/tex]
v² = 4.77 x 10¹²
v = 2.18 x 10⁶ m/s
d) the period of the circular motion.
[tex]T=\dfrac{2\pi}{\omega}[/tex]
[tex]T=\dfrac{2\pi r}{v}[/tex]
[tex]T=\dfrac{2\pi\times 0.53\times 10^{-10}}{2.18\times 10^6}[/tex]
T = 1.53 x 10⁻¹⁶ s
Answer:
(a) [tex]a = 9.00\times 10^{22}\ m/s^{2}[/tex]
(b) [tex]v = 3.089\times 10^{6}\ m/s[/tex]
(c) [tex]T = 1.078\times 10^{-16}\ s[/tex]
Solution:
As per the question:
Radius of the orbit, [tex]R = 0.53\times 10^{- 10}\ m[/tex]
Mass of an electron, [tex]m_{e} = 9.11\times 10^{- 31}\ kg[/tex]
Now,
To calculate the radial acceleration, force due to the acceleration of the electron is balanced by the electrostatic force:
[tex]F = F_{e}[/tex] (1)
where
[tex]F = ma[/tex]
[tex]F_{e} = k\frac{QQ'}{R^{2}}[/tex]
Since, the charge particles are electrons, thus:
[tex]F_{e} = k\frac{e^{2}}{R^{2}}[/tex]
where
k = electrostatic constant = [tex]9.0\times 10^{9}\ Nm^{2}C^{- 2}[/tex]
Use eqn (1):
[tex]m_{e}a = k\frac{e^{2}}{R^{2}}[/tex]
[tex]a = k\frac{e^{2}}{m_{e}R^{2}}[/tex]
where
a = radial acceleration
e = charge on an electron = [tex]1.6\times 10^{- 19}\C[/tex]
Therefore,
[tex]a = 9.0\times 10^{9}\times \frac{(1.6\times 10^{- 19})^{2}}{9.11\times 10^{- 31}\times (0.53\times 10^{- 10})^{2}}[/tex]
a = [tex]9.00\times 10^{22}\ m/s^{2}[/tex]
(b) To calculate the speed, 'v' of an electron in the circular orbit:
Here, the force is given by the centripetal force:
[tex]ma = m\frac{v^{2}}{R}[/tex]
[tex]a = \frac{v^{2}}{R}[/tex]
[tex]v = \sqrt{2aR} = \sqrt{2\times 9.00\times 10^{22}\times 0.53\times 10^{- 10}}[/tex]
[tex]v = 3.089\times 10^{6}\ m/s[/tex]
(c) To calculate the period:
[tex]T = \frac{2\pi}{\omega}[/tex]
where
[tex]\omega = \frac{v}{R}[/tex] = angular velocity
Thus
[tex]T = \frac{2\pi}{\frac{v}{R}} = \frac{2\pi R}{v}[/tex]
[tex]T = \frac{2\pi \times 0.53\times 10^{- 10}}{3.089\times 10^{6}}[/tex]
[tex]T = 1.078\times 10^{-16}\ s[/tex]