Respuesta :
Answer:
a) k = 1.93 10² N / m , b) v = 0.773 10⁴ m / s , c) A = 3.6 10¹² m
Explanation:
a) As the iodine atom is still, there are no forces on it, so we can work on the hydrogen atom only with mass m = 1.67355 10⁻²⁷ kg, the angular velocity is
w = √ k / m
k = m w²
Angular velocity and frequency are related.
w = 2π f
k = 4π² m f²
Let's calculate
k = 4π² 1.67355 10⁻²⁷ (7 10¹³)²
k = 1.93 10² N / m
b) The energy of the atom is conserved, in the approximation of a mass-spring system, the energy ranges from kinetic to power, when the elongation is zero all energy is kinetic
Em = K = ½ m v²
v = √ 2Em / m
v = √ (2 5 10⁻²⁰ / 1.67355 10⁻²⁷)
v = √ (0.5975 10⁸)
v = 0.773 10⁴ m / s
c) At the point of maximum elongation all energy is potential
Em = U = ½ k A²
A = √ 2 Em / k
A = √ (2 5 10⁻²⁰ / 0.773 10⁴)
A = √ (12,937 10⁻²⁴)
A = 3.6 10¹² m
We see that the classic result is much smaller by one factor.
A / A_true = 3.6 10⁻¹² / 1.6 10⁻¹⁰
A / A_true = 2.25 10⁻²
Answer:
The spring force constant is [tex]k=1.93 \times 10^{2} \;\rm N/m[/tex].
The maximum speed of H-atom is 7738.23 m/s.
The amplitude of vibrational motion is [tex]2.27 \times 10^{-11} \;\rm m[/tex].
Explanation:
Given data:
Vibrational frequency is, [tex]f=7 \times 10^{13} \;\rm Hz[/tex].
Vibrational energy is, [tex]E=5 \times 10^{-20} \;\rm J[/tex].
Equilibrium distance between two atoms is, [tex]d = 1.6 \times 10^{-10} \;\rm m[/tex].
(a)
The angular frequency is,
[tex]\omega = \sqrt{\dfrac{k}{m} }[/tex] .................................................................(1)
Here, k is the force constant of spring and m is the mass of hydrogen atom. And its value is [tex]1.67 \times 10^{-27} \;\rm kg[/tex].
Angular frequency is also expressed as,
[tex]\omega = 2 \pi f[/tex].......................................................(2)
Comparing equation (1) and (2) as,
[tex]2 \pi f= \sqrt{\dfrac{k}{m} } \\(2 \pi \times 7 \times 10^{13})^{2}= \dfrac{k}{1.67 \times 10^{-27}}\\k=1.93 \times 10^{2} \;\rm N/m[/tex]
Thus, the spring force constant is [tex]k=1.93 \times 10^{2} \;\rm N/m[/tex].
(b)
The vibrational energy provides the necessary kinetic energy to the molecule. Then,
Vibrational Energy = Kinetic energy
[tex]E= KE\\E= \dfrac{1}{2}mv^{2}\\5 \times 10^{-20}= \dfrac{1}{2} \times 1.67 \times 10^{-27} \times v^{2}\\v = 7738.23 \;\rm m/s[/tex]
Thus, the maximum speed of H-atom is 7738.23 m/s.
(c)
The Amplitude (A) is calculated using the expression,
[tex]E= \dfrac{1}{2}kA^{2}\\5 \times 10^{-20}= \dfrac{1}{2} \times (1.93 \times 10^{2}) \times A^{2}\\A= 2.27 \times 10^{-11} \;\rm m[/tex]
Thus, the amplitude of vibrational motion is [tex]2.27 \times 10^{-11} \;\rm m[/tex].
Compare with equilibrium distance as,
[tex]\dfrac{A}{d} =\dfrac{2.27 \times 10^{-11} \;\rm m}{1.6 \times 10^{-10} \;\rm m}\\\dfrac{A}{d} =0.142[/tex]
And it is 0.142 times the equilibrium distance between the atoms.
For more details, refer to the link:
https://brainly.com/question/24284560?referrer=searchResults