Respuesta :
Answer:
a) [tex]h=1991.25\ m[/tex]
b) [tex]t=20.1588\ s[/tex]
c) [tex]v=197.5563\ m.s^{-1}[/tex]
Explanation:
Given:
- acceleration in the first stage of the rocket, [tex]a_1=3.5\ m.s^{-2}[/tex]
- duration of the first stage firing, [tex]t_1=25\ s[/tex]
- duration of the second stage firing, [tex]t_2'=10\ s[/tex]
- velocity at the end of the second stage, [tex]v_2=132.5\ m.s^{-1}[/tex]
Now velocity at the end of the first stage:
[tex]v_1=u_1+a_1.t_1[/tex]
where
[tex]u_1=[/tex] initial velocity in at the start of the stage 1(at rest) = 0
[tex]v_1=0+3.5\times 25[/tex]
[tex]v_1=87.5\ m.s^{-1}[/tex]
A)
distance travelled at the end of the first stage:
[tex]s_1=u_1.t_1+\frac{1}{2} \times a_1.t_1^2[/tex]
[tex]s_1=0+0.5\times 3.5\times 25^2[/tex]
[tex]s_1=1093.75\ m[/tex]
acceleration in the second stage:
[tex]v_2=u_2+a_2.t_2[/tex]
here:
[tex]u_2=v_1 =87.5\ m.s^{-1}[/tex] (final velocity of the first stage is the initial velocity for the second stage)
[tex]132.5=87.5+a_2\times 10^2[/tex]
[tex]a_2=0.45\ m.s^{-2}[/tex]
distance travelled in the second stage of the rocket:
[tex]s_2=u_2.t_2+\frac{1}{2} \times a_2.t_2^2[/tex]
[tex]s_2=87.5\times 10+0.5\times 0.45\times 10^2[/tex]
[tex]s_2=897.5\ m[/tex]
Therefore the maximum height reached by the rocket:
[tex]h=s_1+s_2[/tex]
[tex]h=1093.75+897.5[/tex]
[tex]h=1991.25\ m[/tex]
B)
Using eq. of motion:
[tex]h=u.t+\frac{1}{2} \times g\times t^2[/tex]
here;
u = initial velocity of the rocket in the event of coming down after reaching the topmost height = 0
[tex]1991.25=0+0.5\times 9.8\times t^2[/tex]
[tex]t=20.1588\ s[/tex]
C)
The final velocity of the rocket when going down towards the launchpad:
[tex]v^2=u^2+2\times g\times h[/tex]
[tex]v^2=0^2+2\times 9.8\times 1991.25[/tex]
[tex]v=197.5563\ m.s^{-1}[/tex]