Answer:
a) The domain of f(x) is [tex]x > 1.1[/tex].
b)
The inverse function is:
[tex]y = \ln{(e^{x} + 3)}
The domain is all the real values of x.
Step-by-step explanation:
(a) Find the domain off f(x) = ln(e^x − 3)
The domain of f(x) = ln(g(x)) is g(x) > 0. That means that the ln function only exists for positive values.
So, here we have
[tex]g(x) = e^{x} - 3[/tex]
So we need
[tex]e^{x} - 3 > 0[/tex]
[tex]e^{x} > 3[/tex]
Applying ln to both sides
[tex]\ln{e^{x}} > \ln{3}[/tex]
[tex]x > 1.1[/tex]
So the domain of f(x) is [tex]x > 1.1[/tex].
(b) Find F −1 and its domain.
[tex]F^{-1}[/tex] is the inverse function of f.
How do we find the inverse function?
To find the inverse equation, we change y with x to form the new equation, and then we isolate y in the new equation. So:
Original equation:
f(x) = y = \ln{e^{x} - 3}
New equation
[tex]x = \ln{e^{y} - 3}[/tex]
Here, we apply the exponential to both sides:
[tex]e^{x} = e^{\ln{e^{y} - 3}}[/tex]
[tex]e^{y} - 3 = e^{x}[/tex]
[tex]e^{y} = e^{x} + 3[/tex]
Applying ln to both sides
[tex]\ln{e^{y}} = \ln{e^{x} + 3}[/tex]
The inverse function is:
[tex]y = \ln{e^{x} + 3}[/tex]
The domain is
[tex]e^{x} + 3 > 0[/tex]
[tex]e^{x} > -3[/tex]
[tex]e^{x}[/tex] is always a positive number, so it is always going to be larger than -3 no matter the value of x. So the domain are all the real values.