Answer:
a) 1.9
b) 3.25
c) 1.5
d) -5.25
Step-by-step explanation:
We are given the following in the data:
4, 7, -1, 1, 0, 5, -3, 2, -1, 6, 5, -2
a) Mean change score
[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]
[tex]Mean =\displaystyle\frac{23}{12} = 1.9[/tex]
b) standard deviation for this population
[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]
where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.
Sum of differences = 126.92
[tex]S.D = \sqrt{\dfrac{126.92}{12}} = 3.25[/tex]
c) median change score
Sorted data: -3, -2, -1, -1, 0, 1, 2, 4, 5, 5, 6, 7
[tex]Median:\\\text{If n is odd, then}\\\\Median = \displaystyle\frac{n+1}{2}th ~term \\\\\text{If n is even, then}\\\\Median = \displaystyle\frac{\frac{n}{2}th~term + (\frac{n}{2}+1)th~term}{2}[/tex]
[tex]\text{Median} = \dfrac{6^{th}+7^{th}}{2} = \dfrac{1+2}{2} = 1.5[/tex]
d) change score that is 2.2 standard deviations below the mean.
[tex]\mu - 2.2(\sigma)\\1.92 - 2.2(3.25) = -5.25[/tex]