Answer:
The solution to the system is:
[tex]\begin{array}{ccc}x_1&=&-8\\x_2&=&2\end{array}[/tex]
Step-by-step explanation:
To find the solution to the system of linear equations
[tex]\left\begin{array}{cccccc}x_1&+&2x_2&=&-4\\3x_1&+&8x_2&=&-8\end{array}\right[/tex]
using elementary row operations.
First, state the problem in matrix form. A matrix is a grid of numbers without the vertical line.
[tex]\left[\begin{array}{cc|c}1&2&-4\\3&8&-8\end{array}\right][/tex]
This is called an augmented matrix. The word “augmented” refers to the vertical line, which we draw to remind ourselves where the equals sign belongs.
Now,
Row Operation 1: add -3 times the 1st row to the 2nd row
[tex]\left[\begin{array}{cc|c}1&2&-4\\0&2&4\end{array}\right][/tex]
Row Operation 2: multiply the 2nd row by 1/2
[tex]\left[\begin{array}{cc|c}1&2&-4\\0&1&2\end{array}\right][/tex]
Row Operation 3: add -2 times the 2nd row to the 1st row
[tex]\left[\begin{array}{cc|c}1&0&-8\\0&1&2\end{array}\right][/tex]
Next, interpret the reduced row echelon form
[tex]\left[\begin{array}{cc|c}1&0&-8\\0&1&2\end{array}\right] \rightarrow \begin{array}{ccc}x_1&=&-8\\x_2&=&2\end{array}[/tex]
The solution to the system is:
[tex]\begin{array}{ccc}x_1&=&-8\\x_2&=&2\end{array}[/tex]