Answer:
[tex]\dot Q=350.438\ W[/tex]
Explanation:
Given:
the thermal resistance in the form of
[tex]R_1=\frac{x_1}{k_1} =0.095\ m^2.^{\circ}C.W^{-1}[/tex]
[tex]R_2=\frac{x_2}{k_2} =0.704\ m^2.^{\circ}C.W^{-1}[/tex]
where:
[tex]x_1\ \&\ x_2[/tex] are the thickness of the respective bricks
[tex]k_1\ \&\ k_2[/tex] are the respective coefficient of conductivity
temperature inside the house, [tex]T_h=24\ ^{\circ}C[/tex]
temperature outside the house, [tex]\ T_c=10^{\circ}C[/tex]
area of the wall, [tex]A=20\ m^2[/tex]
Since the bricks and insulation are used to construct a wall then they must be used in series for better shielding.
Using Fourier's law:
[tex]\dot Q=k.A.\frac{dT}{x}[/tex]
[tex]\dot Q={dT}\div {\frac{x}{k.A} }[/tex]
in series the resistances get add up
[tex]\dot Q=dT\div (\frac{x_1}{k_1.A}+\frac{x_2}{k_2.A} )[/tex]
[tex]\dot Q=(24-10)\div (\frac{0.095 }{20}+ \frac{0.704 }{20} )[/tex]
[tex]\dot Q=350.438\ W[/tex]