Answer:
Angle=70°
Explanation:
Given data
a=2i-5j+k
b=9i-k
To find
Angle Θ
Solution
As we know from dot product rule that
[tex]a.b=|a||b|cos\alpha \\cos\alpha=\frac{a.b}{|a||b|}\\\alpha=cos^{-1} (\frac{a.b}{|a||b|})[/tex]
First we need to find a.b
As
i.i=j.j=k.k=1
i.j=i.k=j.k=0
So
[tex]a.b=(18)+(-1)\\a.b=17[/tex]
Now for |a| and |b|
[tex]|a|=\sqrt{x^{2} +y^{2}+z^{2} }\\|a|=\sqrt{(2)^{2} +(-5)^{2}+(1)^{2} }\\ |a|=5.477\\And\\|b|=\sqrt{x^{2} +y^{2}+z^{2} }\\|b|=\sqrt{(9)^{2} +(0)^{2}+(-1)^{2} }\\|b|=9.055[/tex]
So the angle is given as
[tex]\alpha=cos^{-1} (\frac{a.b}{|a||b|})\\\alpha=cos^{-1} (\frac{17}{(5.477)*(9.055)})\\\alpha =70^{o}[/tex]