Answer:
x-coordinates of relative extrema = [tex]\frac{-1}{2}[/tex]
x-coordinates of the inflexion points are 0, 1
Step-by-step explanation:
[tex]f(x)=6x^{\frac{1}{3}}+3x^{\frac{4}{3}}[/tex]
Differentiate with respect to x
[tex]f'(x)=6\left ( \frac{1}{3} \right )x^{\frac{-2}{3}}+3\left ( \frac{4}{3} \right )x^{\frac{1}{3}}=\frac{2}{x^{\frac{2}{3}}}+4x^{\frac{1}{3}}[/tex]
[tex]f'(x)=0\Rightarrow \frac{2}{x^{\frac{2}{3}}}+4x^{\frac{1}{3}}=0\Rightarrow x=\frac{-1}{2}[/tex]
Differentiate f'(x) with respect to x
[tex]f''(x)=2\left ( \frac{-2}{3} \right )x^{\frac{-5}{3}}+\frac{4}{3}x^{\frac{-2}{3}}=\frac{-4x^{\frac{2}{3}}+4x^{\frac{5}{3}}}{3x^{\frac{2}{3}}x^{\frac{5}{3}}}\\f''(x)=0\Rightarrow \frac{-4x^{\frac{2}{3}}+4x^{\frac{5}{3}}}{3x^{\frac{2}{3}}x^{\frac{5}{3}}}=0\Rightarrow x=1[/tex]
At x = [tex]\frac{-1}{2}[/tex],
[tex]f''\left ( \frac{-1}{2} \right )=\frac{4\left ( -1+4\left ( \frac{-1}{2} \right ) \right )}{3\left ( \frac{-1}{2} \right )^{\frac{5}{3}}}>0[/tex]
We know that if [tex]f''(a)>0[/tex] then x = a is a point of minima.
So, [tex]x=\frac{-1}{2}[/tex] is a point of minima.
For inflexion points:
Inflexion points are the points at which f''(x) = 0 or f''(x) is not defined.
So, x-coordinates of the inflexion points are 0, 1