Answer:
402.2 degrees Celsius
Explanation:
We are given that
Activation energy=[tex]E_a=13.6 KJ/mol=13.6\times 10^3J/mol[/tex]
[tex]1 KJ=10^3 J[/tex]
Rate constant=[tex]k_2=24.5/min[/tex]
[tex]T_2=754^{\circ}C=754+273=1027 K[/tex]
[tex]k_1=10.7/min[/tex]
R=8.314 J/mol k
Formula:[tex]log\frac{k_2}{k_1}=\frac{E_a}{2.303R}(\frac{T_2-T_1}{T_2T_1}[/tex]
Using the formula
[tex]log\frac{24.5}{10.7}=\frac{13.6\times 10^3}{2.303\times 8.314}\times (\frac{1027-T_1}{1027T_1}[/tex][tex])[/tex]
[tex]\frac{1027-T_1}{1027T_1}=log\frac{24.5}{10.7}\times \frac{8.314\times 2.303}{13.6\times 10^3}[/tex]
[tex]\frac{1027-T_1}{1027T_1}=(log 24.5-log10.7)\times 1.408\times 10^{-3}[/tex]
[tex]\frac{1027-T_1}{1027T_1}=0.3598\times 1.408\times 10^{-3}=0.507\times 10^{-3}[/tex]
[tex]\frac{1027-T_1}{T_1}=1027\times 0.507\times 10^{-3}=0.521[/tex]
[tex]1027-T_1=0.521T_1[/tex]
[tex]1027=0.521T_1+T_1=1.521T_1[/tex]
[tex]T_1=\frac{1027}{1.521}=675.2[/tex]
[tex]T_1=675.2-273=402.2^{\circ}C[/tex]
Hence, the rate constant will be 10.7/min at temperature 402.2 degrees Celsius