Respuesta :
Answer:
[tex] \hat p = \frac{r}{\bar x +r}[/tex]
Step-by-step explanation:
A negative binomial random variable "is the number X of repeated trials to produce r successes in a negative binomial experiment. The probability distribution of a negative binomial random variable is called a negative binomial distribution, this distribution is known as the Pascal distribution".
And the probability mass function is given by:
[tex]P(X=x) = (x+r-1 C k)p^r (1-p)^{x}[/tex]
Where r represent the number successes after the k failures and p is the probability of a success on any given trial.
Solution to the problem
For this case the likehoof function is given by:
[tex] L(\theta , x_i) = \prod_{i=1}^n f(\theta ,x_i) [/tex]
If we replace the mass function we got:
[tex] L(p, x_i) = \prod_{i=1}^n (x_i +r-1 C k) p^r (1-p)^{x_i}[/tex]
When we take the derivate of the likehood function we got:
[tex] l(p,x_i) = \sum_{i=1}^n [log (x_i +r-1 C k) + r log(p) + x_i log(1-p)][/tex]
And in order to estimate the likehood estimator for p we need to take the derivate from the last expression and we got:
[tex] \frac{dl(p,x_i)}{dp} = \sum_{i=1}^n \frac{r}{p} -\frac{x_i}{1-p}[/tex]
And we can separete the sum and we got:
[tex] \frac{dl(p,x_i)}{dp} = \sum_{i=1}^n \frac{r}{p} -\sum_{i=1}^n \frac{x_i}{1-p}[/tex]
Now we need to find the critical point setting equal to zero this derivate and we got:
[tex] \frac{dl(p,x_i)}{dp} = \sum_{i=1}^n \frac{r}{p} -\sum_{i=1}^n \frac{x_i}{1-p}=0[/tex]
[tex] \sum_{i=1}^n \frac{r}{p} =\sum_{i=1}^n \frac{x_i}{1-p}[/tex]
For the left and right part of the expression we just have this using the properties for a sum and taking in count that p is a fixed value:
[tex] \frac{nr}{p}= \frac{\sum_{i=1}^n x_i}{1-p}[/tex]
Now we need to solve the value of [tex] \hat p[/tex] from the last equation like this:
[tex] nr(1-p) = p \sum_{i=1}^n x_i [/tex]
[tex] nr -nrp =p \sum_{i=1}^n x_i [/tex]
[tex]p \sum_{i=1}^n x_i +nrp = nr[/tex]
[tex] p[\sum_{i=1}^n x_i +nr]= nr[/tex]
And if we solve for [tex]\hat p[/tex] we got:
[tex] \hat p = \frac{nr}{\sum_{i=1}^n x_i +nr}[/tex]
And if we divide numerator and denominator by n we got:
[tex] \hat p = \frac{r}{\bar x +r}[/tex]
Since [tex] \bar x = \frac{\sum_{i=1}^n x_i}{n}[/tex]