5.2.14. For the negative binomial pdf p (k; p, r) = k+r−1 (1 − p)kpr, find the maximum likelihood k estimator for p if r is known.

Respuesta :

Answer:

[tex] \hat p = \frac{r}{\bar x +r}[/tex]

Step-by-step explanation:

A negative binomial random variable "is the number X of repeated trials to produce r successes in a negative binomial experiment. The probability distribution of a negative binomial random variable is called a negative binomial distribution, this distribution is known as the Pascal distribution".

And the probability mass function is given by:

[tex]P(X=x) = (x+r-1 C k)p^r (1-p)^{x}[/tex]

Where r represent the number successes after the k failures and p is the probability of a success on any given trial.

Solution to the problem

For this case the likehoof function is given by:

[tex] L(\theta , x_i) = \prod_{i=1}^n f(\theta ,x_i) [/tex]

If we replace the mass function we got:

[tex] L(p, x_i) = \prod_{i=1}^n (x_i +r-1 C k) p^r (1-p)^{x_i}[/tex]

When we take the derivate of the likehood function we got:

[tex] l(p,x_i) = \sum_{i=1}^n [log (x_i +r-1 C k) + r log(p) + x_i log(1-p)][/tex]

And in order to estimate the likehood estimator for p we need to take the derivate from the last expression and we got:

[tex] \frac{dl(p,x_i)}{dp} = \sum_{i=1}^n \frac{r}{p} -\frac{x_i}{1-p}[/tex]

And we can separete the sum and we got:

[tex] \frac{dl(p,x_i)}{dp} = \sum_{i=1}^n \frac{r}{p} -\sum_{i=1}^n \frac{x_i}{1-p}[/tex]

Now we need to find the critical point setting equal to zero this derivate and we got:

[tex] \frac{dl(p,x_i)}{dp} = \sum_{i=1}^n \frac{r}{p} -\sum_{i=1}^n \frac{x_i}{1-p}=0[/tex]

[tex] \sum_{i=1}^n \frac{r}{p} =\sum_{i=1}^n \frac{x_i}{1-p}[/tex]

For the left and right part of the expression we just have this using the properties for a sum and taking in count that p is a fixed value:

[tex] \frac{nr}{p}= \frac{\sum_{i=1}^n x_i}{1-p}[/tex]

Now we need to solve the value of [tex] \hat p[/tex] from the last equation like this:

[tex] nr(1-p) = p \sum_{i=1}^n x_i [/tex]

[tex] nr -nrp =p \sum_{i=1}^n x_i [/tex]

[tex]p \sum_{i=1}^n x_i +nrp = nr[/tex]

[tex] p[\sum_{i=1}^n x_i +nr]= nr[/tex]

And if we solve for [tex]\hat p[/tex] we got:

[tex] \hat p = \frac{nr}{\sum_{i=1}^n x_i +nr}[/tex]

And if we divide numerator and denominator by n we got:

[tex] \hat p = \frac{r}{\bar x +r}[/tex]

Since [tex] \bar x = \frac{\sum_{i=1}^n x_i}{n}[/tex]

ACCESS MORE
EDU ACCESS