calculate the energy (in kj/mol) required to remove the electron in the ground state for each of the following one-electron species using the bohr model.
(a) H = ? kJ/mol(b) B^4+ = ? kJ/mol(c) Li^2+ = ? kJ/mol(d) Mn^24+ = ? kJ/mol

Respuesta :

Explanation:

[tex]E_n=-13.6\times \frac{Z^2}{n^2}ev[/tex]

where,

[tex]E_n[/tex] = energy of [tex]n^{th}[/tex] orbit

n = number of orbit

Z = atomic number

a) Energy change due to transition from n = 1 to n = ∞ ,hydrogen atom .

Z = 1

Energy of n = 1 in an hydrogen like atom:

[tex]E_1=-13.6\times \frac{1^2}{1^2}eV=-13.6 eV[/tex]

Energy of n = ∞ in an hydrogen like atom:

[tex]E_{\infty}=-13.6\times \frac{1^2}{(\infty)^2}eV=0[/tex]

Let energy change be E for 1 atom.

[tex]E=E_{\infty}-E_1=0-(-13.6  eV)=13.6 eV[/tex]

[tex]1 mole = 6.022\times 10^{-23} [/tex]

Energy for 1 mole = E'

[tex]E'=6.022\times 10^{-23} mol^{-1}\times 13.6 eV[/tex]

[tex]1 eV=1.60218\times 10^{-22} kJ[/tex]

[tex]E'=6.022\times 10^{23}\times 13.6 \times 1.60218\times 10^{-22} kJ/mol[/tex]

[tex]E'=1,312.17 kJ/mol[/tex]

The energy  required to remove the electron in the ground state is 1,312.17 kJ/mol.

b) Energy change due to transition from n = 1 to n = ∞ ,[tex]B^{4+}[/tex] atom .

Z = 5

Energy of n = 1 in an hydrogen like atom:

[tex]E_1=-13.6\times \frac{5^2}{1^2}eV=-340 eV[/tex]

Energy of n = ∞ in an hydrogen like atom:

[tex]E_{\infty}=-13.6\times \frac{5^2}{(\infty)^2}eV=0[/tex]

Let energy change be E.

[tex]E=E_{\infty}-E_1=0-(-340eV)=340 eV[/tex]

[tex]1 mole = 6.022\times 10^{-23} [/tex]

Energy for 1 mole = E'

[tex]E'=6.022\times 10^{-23} mol^{-1}\times 340eV[/tex]

[tex]1 eV=1.60218\times 10^{-22} kJ[/tex]

[tex]E'=6.022\times 10^{23}\times 340\times 1.60218\times 10^{-22} kJ/mol[/tex]

[tex]E'=32,804.31 kJ/mol[/tex]

The energy  required to remove the electron in the ground state is 32,804.31 kJ/mol.

c) Energy change due to transition from n = 1 to n = ∞ ,[tex]Li^{2+}[/tex]atom .

Z = 3

Energy of n = 1 in an hydrogen like atom:

[tex]E_1=-13.6\times \frac{3^2}{1^2}eV=-122.4 eV[/tex]

Energy of n = ∞ in an hydrogen like atom:

[tex]E_{\infty}=-13.6\times \frac{3^2}{(\infty)^2}eV=0[/tex]

Let energy change be E.

[tex]E=E_{\infty}-E_1=0-(-122.4 eV)=122.4 eV[/tex]

[tex]1 mole = 6.022\times 10^{-23} [/tex]

Energy for 1 mole = E'

[tex]E'=6.022\times 10^{-23} mol^{-1}\times 122.4 eV[/tex]

[tex]1 eV=1.60218\times 10^{-22} kJ[/tex]

[tex]E'=6.022\times 10^{23}\times 122.4\times 1.60218\times 10^{-22} kJ/mol[/tex]

[tex]E'=11,809.55 kJ/mol[/tex]

The energy  required to remove the electron in the ground state is 11,809.55 kJ/mol.

d) Energy change due to transition from n = 1 to n = ∞ ,[tex]Mn^{24+}[/tex]atom .

Z = 25

Energy of n = 1 in an hydrogen like atom:

[tex]E_1=-13.6\times \frac{25^2}{1^2}eV=-8,500 eV[/tex]

Energy of n = ∞ in an hydrogen like atom:

[tex]E_{\infty}=-13.6\times \frac{25^2}{(\infty)^2}eV=0[/tex]

Let energy change be E.

[tex]E=E_{\infty}-E_1=0-(-8,500 eV)=8,500 eV[/tex]

[tex]1 mole = 6.022\times 10^{-23} [/tex]

Energy for 1 mole = E'

[tex]E'=6.022\times 10^{-23} mol^{-1}\times 8,500eV[/tex]

[tex]1 eV=1.60218\times 10^{-22} kJ[/tex]

[tex]E'=6.022\times 10^{23}\times 8,500 \times 1.60218\times 10^{-22} kJ/mol[/tex]

[tex]E'=820,107.88 kJ/mol[/tex]

The energy  required to remove the electron in the ground state is 820,107.88 kJ/mol.

ACCESS MORE
EDU ACCESS