Write a definite integral that represents the area of the region. (Do not evaluate the integral.) y1 = x2 + 2x + 3 y2 = 2x + 12Figure:A parabola was given in the figure

Respuesta :

Answer:

[tex]A = \int\limits^3__-3}{9}-{x^{2}} \, dx = 36[/tex]

Step-by-step explanation:

The equations are:

[tex]y = x^{2} + 2x + 3[/tex]

[tex]y = 2x + 12[/tex]

The two graphs intersect when:

[tex]x^{2} + 2x + 3 = 2x + 12[/tex]

[tex]x^{2} = 0[/tex]

[tex]x_{1} = 3\\x_{2} = -3[/tex]

To find the area under the curve for the first equation:

[tex]A_{1} = \int\limits^3__-3}{x^{2} + 2x + 3} \, dx[/tex]

To find the area under the curve for the second equation:

[tex]A_{2} = \int\limits^3__-3}{2x + 12} \, dx[/tex]

To find the total area:

[tex]A = A_{2} -A_{1} = \int\limits^3__-3}{2x + 12} \, dx -\int\limits^3__-3}{x^{2} + 2x + 3} \, dx[/tex]

Simplifying the equation:

[tex]A = \int\limits^3__-3}{2x + 12}-({x^{2} + 2x + 3}) \, dx = \int\limits^3__-3}{9}-{x^{2}} \, dx[/tex]

Note: The reason the area is equal to the area two minus area one is that the line, area 2, is above the region of interest (see image).  

Ver imagen mateolara11
ACCESS MORE
EDU ACCESS
Universidad de Mexico