Respuesta :
Answer with Step-by-step explanation:
a.Let given vector
a=8i-j+4k
[tex]\mid a\mid=\sqrt{(8)^2+(-1)^2+(4)^2}=9[/tex]
By using the formula
Magnitude of a vector=[tex]\sqrt{x^2+y^2+z^2}[/tex]
Where x=Coefficient of i
y=Coefficient of j
z=Coefficient of k
Unit vector=[tex]\hat{a}=\frac{a}{\mid a\mid}[/tex]
By using the formula
The unit vector=[tex]\hat{a}=\frac{8i-j+4k}{9}=\frac{8}{9}i-\frac{1}{9}j+\frac{4}{9}k[/tex]
b.Let vector b=-2i+4j+2k
[tex]\mid b\mid=\sqrt{(-2)^2+4^2+2^2}=2\sqrt 6[/tex]
[tex]\hat{b}=\frac{-2i+4j+2k}{2\sqrt 6}[/tex]
Length of vector=6
Therefore, the vector in the direction of <-2,4,2> with length 6 is given by =[tex]6\hat{b}=6\times \frac{-2i+4j+2k}{2\sqrt 6}[/tex]
The vector in the direction of <-2,4,2> with length 6 is given by =[tex]-\sqrt 6(-i+2j+k)[/tex]
c.[tex]\theta=\frac{\pi}{3}[/tex]
[tex]\mid v\mid=8[/tex]
Let v=[tex]v_x i+v_y j[/tex]
[tex]v_x=\mid v\mid cos\theta[/tex]
[tex]v_x=8cos\frac{\pi}{3}=8\times \frac{1}{2}=4[/tex]
[tex] cos\frac{\pi}{3}=\frac{1}{2}[/tex]
[tex]v_y=\mid v\mid sin\theta[/tex]
[tex]v_y=8\times sin\frac{\pi}{3}=8\times \frac{\sqrt 3}{2}=4\sqrt 3[/tex]
[tex]sin\frac{\pi}{3}=\frac{\sqrt 3}{2}[/tex]
Therefore, the vector v in component form=[tex]4i+4\sqrt 3j[/tex]