Answer:
Option 2.
Step-by-step explanation:
Given information: k=0.12, initial temperature = 190 degrees Fahrenheit and the freezer temperature = 0 degrees Fahrenheit
Newton's Law of cooling
[tex]T(t)=T_1+(T_0-T_1)e^{-kt}[/tex]
where,
T(t) is temperature a time t.
[tex]T_1[/tex] is temperature of surrounding environment.
[tex]T_0[/tex] is initial temperature of object.
k is constant (Different for each object)
Substitute [tex]T_1=0, T_0=190[/tex] and k=0.12 in the above equation.
[tex]T(t)=0+(190-0)e^{-0.12t}[/tex]
[tex]T(t)=190e^{-0.12t}[/tex]
We need to find the temperature of the hot chocolate after 3 minutes.
Substitute t=3 in the above equation.
[tex]T(3)=190e^{-0.12(3)}[/tex]
[tex]T(3)=132.558501953[/tex]
[tex]T(3)\approx 132.56[/tex]
Therefore, the correct option is 2.