Answer:
Power generated will be equal to 1054.046 watt
Explanation:
We have given mass m = 0.129 kg
Length of the rope = 3.70 m
So mass density [tex]\mu =\frac{m}{l}=\frac{0.129}{3.7}=0.0348kg/m[/tex]
Amplitude A = 0.200 m
Wavelength = 0.600 m
Velocity of the wave v = 24 m/sec
So frequency [tex]f=\frac{v}{\lambda }=\frac{24}{0.600}=40Hz[/tex]
Now angular frequency will be equal to [tex]\omega =2\pi f=2\times 3.14\times 40=251.2rad/sec[/tex]
We have to fond the generated power
Power will be equal to [tex]P=\frac{1}{2}\mu \omega ^2A^2v=\frac{1}{2}\times 0.0348\times 251.2^2\times 0.2^2\times 24=1054.046watt[/tex]
So power generated will be equal to 1054.046 watt