Answer:
The length of rectangle B must to be 25% greater than the length of rectangle A
Step-by-step explanation:
step 1
Find the area of rectangle A
[tex]A=LW[/tex]
substitute the given values
[tex]A=(80)(30)=2,400\ in^2[/tex]
step 2
Find the width of rectangle B
Multiply by 0.80 (80%) the width of rectangle A
[tex]W=0.80(30)=24\ in[/tex]
step 3
Find the length of rectangle B
we have
[tex]A=2,400\ in^2\\W=24\ in[/tex]
substitute in the formula of area
[tex]A=LW[/tex]
[tex]2,400=24L[/tex]
solve for L
[tex]L=100\ in[/tex]
step 4
Find the percentage
we know that
The length of rectangle A represent 100%
so
using proportion
Find out what percentage represent the difference of its length
100-80=20 in
[tex]\frac{80}{100\%}=\frac{20}{x}\\\\x=100(20)/80\\\\x=25\%[/tex]
therefore
The length of rectangle B must to be 25% greater than the length of rectangle A