Respuesta :

Answer:

The answer is [tex]x=-\frac{50}{8}[/tex]  and [tex]y=\frac{11}{2}.[/tex]

Step-by-step explanation:

Given:

-4x-2y=14

-10x+7y=-24

Now, to solve it by elimination:

[tex]-4x-2y=14[/tex]   ......(1)

[tex]-10x+7y=-24[/tex] ......(2)

So, we multiply the equation (1) by 7 we get:

[tex]-28x-14y=98[/tex]

And, we multiply the equation (2) by 2 we get:

[tex]-20x+14y=-48[/tex]

Now, adding both the new equations:

[tex]-28x-14y+(-20x+14y)=98+(-48)[/tex]

[tex]-28x-14y-20x+14y=98-48[/tex]

[tex]-28x-20x-14y+14y=50[/tex]

[tex]-8x=50[/tex]

Dividing both the sides by -8 we get:

[tex]x=-\frac{50}{8}[/tex]

Now, putting the value of [tex]x[/tex] in equation (1):

[tex]-4x-2y=14[/tex]

[tex]-4(-\frac{50}{8})-2y=14[/tex]

[tex]\frac{200}{8} -2y=14[/tex]

[tex]25-2y=14[/tex]

Subtracting both sides by 25 we get:

[tex]-2y=-11[/tex]

Dividing both sides by -2 we get:

[tex]y=\frac{11}{2}[/tex]

Therefore, the answer is [tex]x=-\frac{50}{8}[/tex]  and [tex]y=\frac{11}{2}.[/tex]

RELAXING NOICE
Relax