Answer:
The correct answer is option B.
Explanation:
Michaelis–Menten 's equation:
[tex]v=V_{max}\times \frac{[S]}{(K_m+[S])}=k_{cat}[E_o]\times \frac{[S]}{(K_m+[S])}[/tex]
[tex]V_{max}=k_{cat}[E_o][/tex]
v = rate of formation of products
[S] = Concatenation of substrate = ?
[tex][K_m][/tex] = Michaelis constant
[tex]V_{max}[/tex]= Maximum rate achieved
[tex]k_{cat}[/tex] = Catalytic rate of the system
[tex]E_o[/tex] = initial concentration of enzyme
We have :
[tex]v=\frac{V_{max}}{4}[/tex]
[S] =?
[tex]K_m=0.0050 M[/tex]
[tex]v=V_{max}\times \frac{[S]}{(K_m+[S])}[/tex]
[tex]\frac{V_{max}}{4}=V_{max}\times \frac{[S]}{(0.0050 M+[S])}[/tex]
[tex][S]=\frac{0.005 M}{3}=1.7\times 10^{-3} M[/tex]
So, the correct answer is option B.