Respuesta :

The equation of a line is [tex]y=\frac{-2}{3} x-\frac{5}{3}[/tex].

Solution:

Given slope, m = [tex]-\frac{2}{3}[/tex] and passes through the point (–3, –1).

Equation of a line passes through one point and slope formula:

[tex]y-y_1=m(x-x_1)[/tex]

Here, [tex]x_1=-3,y_1=-1[/tex] and [tex]m=-\frac{2}{3}[/tex]

Substitute these in the given formula, we get

⇒ [tex]y-(-1)=\frac{-2}{3} (x-(-1))[/tex]

⇒ [tex]y+1=\frac{-2}{3} (x+1)[/tex]

Cross multiply the fraction.

⇒ [tex]3(y+1)=-2 (x+1)[/tex]

⇒ [tex]3y+3=-2x-2[/tex]

Subtract 3 on both sides of the equation.

⇒ [tex]3y=-2x-2-3[/tex]

⇒ [tex]3y=-2x-5[/tex]

Divide by 3 on both sides of the equation.

⇒ [tex]y=\frac{-2}{3} x-\frac{5}{3}[/tex]

Hence, the equation of a line is [tex]y=\frac{-2}{3} x-\frac{5}{3}[/tex].

Answer:

D) y = -2/3x - 3

Step-by-step explanation:

I just took the quiz on edge

RELAXING NOICE
Relax