Respuesta :
Answer:
[tex]\displaystyle \theta=40.1^o[/tex]
Step-by-step explanation:
Application of Right Triangles
The right triangles have an internal angle of 90°, we can take advantage of it because the fundamental trigonometric functions can be expressed to relate angles and lengths in a right triangle.
Please refer to the image below to understand the upcoming relations and variables. The lower triangle has an angle \theta and h_h and D are the opposite and adjacent legs respectively, then:
[tex]\displaystyle tan\theta =\frac{h_h}{D}[/tex]
Where h_h is the height of the tower. We can solve:
[tex]\displaystyle h_h=D\ tan\theta[/tex]
For the big triangle:
[tex]\displaystyle h_t+h_h=D\ tan(\theta +\alpha)[/tex]
Where [tex]\alpha[/tex] is 8° and [tex]h_h[/tex] is the height of the hill. Knowing that:
[tex]\displaystyle h_h=D\ tan \theta[/tex]
We replace it into the above equation
[tex]\displaystyle h_t+D\ tan \theta = D\ tan(\theta +\alpha)[/tex]
We have an equation in [tex]tan\theta[/tex], but we need to expand the tangent of a sum of angles:
[tex]\displaystyle h_t+D\ tan \theta = D\ \frac{tan\theta +tan\alpha}{1-tan\theta \ tan\alpha }[/tex]
Rearranging
[tex]\displaystyle (h_t+D\ tan\theta)(1-tan\theta \ tan\alpha)=D\ tan\theta +D\ tan\alpha[/tex]
Multiplying
[tex]\displaystyle h_t-h_t\ tan \theta \ tan\alpha +D\ tan\theta -D\ tan^2\theta \ tan\alpha =D\ tan\theta +D\ tan\alpha[/tex]
Simplifying, we have a second-degree equation for tan\theta
[tex]\displaystyle -D\ tan^2\theta \ tan\alpha -h_t\ tan\alpha \ tan\theta +h_t-D\ tan\alpha =0[/tex]
Using the known values D=110, ht=30, [tex]\alpha=8^o[/tex]
[tex]\displaystyle -15.46\ tan^2\theta -4.22\ tan\theta +14.54=0[/tex]
Solving the equation, we get two answers:
[tex]\displaystyle tan\theta=-1.12[/tex]
This solution is not feasible, since the angle cannot exceed 90° or go below 0°, thus the other answer
[tex]\displaystyle tan\theta=0.843[/tex]
is the correct option. Computing the angle of inclination of the hill:
[tex]\boxed{\displaystyle \theta=40.1^o}[/tex]
