Part a: Option b. 34 is a solution.
Part b: Option b. 10 is a solution.
Explanation:
Part a: The equation is [tex]4(x+8)=5x-2[/tex]
To find solution to the equation, we can solve for x.
[tex]\begin{aligned}4 x+32 &=5 x-2 \\34 &=x\end{aligned}[/tex]
The solution is [tex]x=34[/tex]
To test whether [tex]x=34[/tex] is a solution, let us substitute [tex]x=34[/tex] in the equation [tex]4(x+8)=5x-2[/tex], we get,
[tex]\begin{aligned}4 x+32 &=5 x-2 \\4(34)+32 &=5(34)-2 \\136+32 &=170-2 \\168 &=168\end{aligned}[/tex]
Since, the values on both sides of the equation are equal, [tex]x=34[/tex] is the solution.
Part b: The equation is [tex]60-3z=30[/tex]
To find solution to the equation, we can solve for z.
[tex]\begin{aligned}60-3 z &=30 \\-3 z &=-30 \\z &=10\end{aligned}[/tex]
The solution is [tex]z=10[/tex]
To test whether [tex]z=10[/tex] is a solution, let us substitute [tex]z=10[/tex] in the equation [tex]60-3z=30[/tex], we get,
[tex]\begin{array}{r}{60-3 z=30} \\{60-3(10)=30} \\{60-30=30} \\{30=30}\end{array}[/tex]
Since, the values on both sides of the equation are equal, [tex]z=10[/tex] is the solution.