Answer:
The value of y in the given equation is [tex]\frac{5}{x+3}[/tex]
Therefore [tex]y=\frac{5}{x+3}[/tex]
Step-by-step explanation:
Given equation is [tex]2xy+6y=10[/tex]
We have find the value of y in the given equation :
[tex]2xy+6y=10[/tex]
Taking the common term 2y outside of LHS we get
[tex]2y(x+3)=10[/tex]
Multiplying by [tex]\frac{1}{2}[/tex] on both sides
[tex]2y(x+3)\times \frac{1}{2}=10\times \frac{1}{2}[/tex]
[tex]y(x+3)=5[/tex]
Dividing by x+3 on both sides we get
[tex]\frac{y(x+3)}{x+3}=\frac{5}{x+3}[/tex]
[tex]y=\frac{5}{x+3}[/tex]
Therefore the value of y in the given equation is [tex]\frac{5}{x+3}[/tex]
Therefore [tex]y=\frac{5}{x+3}[/tex]