Answer:
[tex]Potential\ Energy=Work \ Done=2.301*10^{-18} J[/tex]
Work done to bring three electrons from a great distance apart to 3.0×10−10 m from one another (at the corners of an equilateral triangle) is [tex]2.301*10^{-18} Joules[/tex]
Explanation:
The potential energy is given by:
U=Q*V
where:
Q is the charge
V is the potential difference
Potential Difference=V=[tex]\frac{kq}{r}[/tex]
So,
[tex]Potential\ Energy=\frac{Qkq}{r} \\Q=q\\Potential\ Energy=\frac{kq^2}{r}[/tex]
Where:
k is Coulomb Constant=[tex]8.99*10^9 Nm^2/C^2[/tex]
q is the charge on electron=[tex]-1.6*10^-19 C[/tex]
r is the distance=[tex]3.0*10^{-10}m[/tex]
For 3 Electrons Potential Energy or work Done is:
[tex]Potential\ Energy=3*\frac{kq^2}{r}[/tex]
[tex]Potential\ Energy=3*\frac{(8.99*10^9)(-1.6*10^{-19})^2}{3*10^{-10}}\\Potential\ Energy=2.301*10^{-18} J[/tex]
Work done to bring three electrons from a great distance apart to 3.0×10−10 m from one another (at the corners of an equilateral triangle) is [tex]2.301*10^{-18} Joules[/tex]