Answer : The mass of [tex]O_2[/tex] at 4.00 atm pressure is, 2.8 grams.
Explanation :
First we have to calculate the Henry law constant.
As we know that,
[tex]C_{O_2}=k_H\times p_{O_2}[/tex]
where,
[tex]C_{O_2}[/tex] = solubility of [tex]O_2[/tex] = 0.70 g/L
[tex]p_{O_2}[/tex] = partial pressure of [tex]O_2[/tex] = 1.00 atm
[tex]k_H[/tex] = Henry's law constant
Now put all the given values in the above formula, we get:
[tex]0.70g/L=k_H\times (1.00atm)[/tex]
[tex]k_H=0.70g/L.atm[/tex]
Now we have to calculate the solubility of [tex]O_2[/tex] at 4.00 atm pressure.
[tex]C_{O_2}=k_H\times p_{O_2}[/tex]
where,
[tex]C_{O_2}[/tex] = solubility of [tex]O_2[/tex] at 4.00 atm = ?
[tex]p_{O_2}[/tex] = partial pressure of [tex]O_2[/tex] = 4.00 atm
[tex]k_H[/tex] = Henry's law constant = [tex]0.70g/L.atm[/tex]
Now put all the given values in the above formula, we get:
[tex]C_{O_2}=(0.70g/L.atm)\times (4.00atm)[/tex]
[tex]C_{O_2}=2.8g/L[/tex]
Now we have to calculate the mass of [tex]O_2[/tex]
[tex]\text{Mass of }O_2=\text{Solubility of }O_2\times \text{Volume of solution}[/tex]
[tex]\text{Mass of }O_2=2.8g/L\times 1L=2.8g[/tex]
Thus, the mass of [tex]O_2[/tex] at 4.00 atm pressure is, 2.8 grams.