Answer : The concentration of [tex]Cl_2O_5[/tex] in the vessel 0.820 seconds later is, 0.16 M
Explanation :
The given reaction is:
[tex]2Cl_2O_5(g)\rightarrow 2Cl_2(g)+5O_2(g)[/tex]
The rate law expression is:
[tex]rate=(6.48M^{-1}s^{-1})[Cl_2O_5]^2[/tex]
The expression used for second order kinetics is:
[tex]kt=\frac{1}{[A_t]}-\frac{1}{[A_o]}[/tex]
where,
k = rate constant = [tex]6.48M^{-1}s^{-1}[/tex]
t = time = 0.820 s
[tex][A_t][/tex] = final concentration = ?
[tex][A_o][/tex] = initial concentration = 1.16 M
Now put all the given values in the above expression, we get:
[tex]6.48\times 0.820=\frac{1}{[A_t]}-\frac{1}{1.16}[/tex]
[tex][A_t]=0.16M[/tex]
Therefore, the concentration of [tex]Cl_2O_5[/tex] in the vessel 0.820 seconds later is, 0.16 M