Respuesta :
Answer:
[tex]I_{1}[/tex] = (πD[tex]I_{2}[/tex])/R
Explanation:
If we define the magnitude of the field as B, then we have:
Total magnitude of the field [tex]B_{t}[/tex] = magnitude of the field B_loop + magnitude of the field B_wire. The total magnitude is equivalent to zero. Therefore, the field B_loop has an inward direction while the field B_wire has an outward direction.
B_loop = (μ0)*([tex]I_{2}[/tex])/2*R
B_wire = (μ0)*([tex]I_{1}[/tex])/2*π*D
Thus:
B_loop = B_wire at the center of the loop.
(μ0)*([tex]I_{2}[/tex])/2*R = (μ0)*([tex]I_{1}[/tex])/2*π*D
[tex]I_{1}[/tex] = (πD[tex]I_{2}[/tex])/R
The magnitude of current at the center of the loop is [tex]I_1 = \frac{\pi D I_2}{R}[/tex].
The given parameters;
- radius of the loop = R
- current in the loop, I = I₂
- distance of the loop from the wire, = D
The magnetic field at the center of the loop is calculated as follows;
[tex]B_o = \frac{\mu_o I_2}{2R}[/tex]
The magnetic field at the distance of the wire is calculated as follows;
[tex]B_o = \frac{\mu_o I_1}{2\pi D}[/tex]
The magnitude of current at the center of the loop is calculated as follows;
[tex]\frac{\mu_o I_2 }{2R} = \frac{\mu_o I_1}{2\pi D} \\\\I_1 = \frac{\pi D I_2}{R}[/tex]
Thus, the magnitude of current at the center of the loop is [tex]I_1 = \frac{\pi D I_2}{R}[/tex].
Learn more here:https://brainly.com/question/12904923