Idk this is supper hard

Answer:
The equation of the line is: y = x + 4
Step-by-step explanation:
When we are given two points passing through a line, we can find the equation of the line by using two - point form.
Two - point form: [tex]$ \frac{\textbf{y - y}_\textbf{1}}{\textbf{y}_{\textbf{2}} \textbf{-} \textbf{y}_{\textbf{1}}} = \frac{{\textbf{x - x}_\textbf{1}}}{\textbf{x}_{\textbf{2}} \textbf{-} \textbf{x}_{\textbf{1}} }$[/tex]
where [tex]$ (x_1, y_1) \hspace{3mm} \& \hspace{3mm} (x_2, y_2) $[/tex] are the points passing through the line.
Here, let us take two points (can be any two):
[tex]$(x _1, y_1) = (1, 5) $[/tex] and
[tex]$ (x_2, y_2) = (5, 9) $[/tex]
Therefore, we have:
[tex]$ \frac{y - 5}{9 - 5} = \frac{x - 1}{5 - 1} $[/tex]
[tex]$ \iff \frac{y - 5}{4} = \frac{x - 1}{4} $[/tex]
[tex]$ \iff y - 5 = x - 1 $[/tex]
[tex]$ \implies y = x - 1 + 5 $[/tex]
[tex]$ \implies y = \textbf{x + 4} $[/tex] which is the required answer.