Given: A(g) + B(g) ⇋ C(g) + D(g)

At equilibrium a 2.00 liter container was found to contain 1.60 moles of C, 1.60 moles of D, 0.50 moles of A and 0.50 moles of B. Calculate Kc. enter a number to 2 decimal places

If 0.10 mole of B and 0.10 mole of C are added to this system, what is the value of Q? enter a number to 2 decimal places

What will the new equilibrium concentration of A be? enter a number to 3 decimal places

Respuesta :

Answer:

For 1: The value of [tex]K_c[/tex] is 10.24

For 2: The value of [tex]Q_c[/tex] is 9.07

For 3: The new equilibrium concentration of A is 0.220 M

Explanation:

We are given:

Volume of the container = 2.00 L

Equilibrium moles of A = 0.50 moles

Equilibrium moles of B = 0.50 moles

Equilibrium moles of C = 1.60 moles

Equilibrium moles of D = 1.60 moles

We know that:

[tex]\text{Molarity}=\frac{\text{Moles of solute}}{\text{Volume of solution}}[/tex]

For the given chemical reaction:

[tex]A(g)+B(g)\rightleftharpoons C(g)+D(g)[/tex]

  • For 1:

The expression of [tex]K_c[/tex] for above equation follows:

[tex]K_c=\frac{[C][D]}{[A][B]}[/tex]

We are given:

[tex][A]_{eq}=\frac{0.50}{2.00}=0.25[/tex]

[tex][B]_{eq}=\frac{0.50}{2.00}=0.25[/tex]

[tex][C]_{eq}=\frac{1.60}{2.00}=0.8[/tex]

[tex][D]_{eq}=\frac{1.60}{2.00}=0.8[/tex]

Putting values in above equation, we get:

[tex]K_c=\frac{0.8\times 0.8}{0.25\times 0.25}\\\\K_c=10.24[/tex]

Hence, the value of [tex]K_c[/tex] is 10.24

  • For 2:

Added moles of B = 0.10 moles

Added moles of C = 0.10 moles

[tex]Q_c[/tex] is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.

[tex]Q_c=\frac{[C][D]}{[A][B]}[/tex]

Now,

[tex][A]=\frac{0.50}{2.00}=0.25[/tex]

[tex][B]=\frac{0.60}{2.00}=0.3[/tex]

[tex][C]=\frac{1.70}{2.00}=0.85[/tex]

[tex][D]=\frac{1.60}{2.00}=0.8[/tex]

Putting values in above equation, we get:

[tex]Q_c=\frac{0.85\times 0.8}{0.25\times 0.3}\\\\Q_c=9.07[/tex]

Hence, the value of [tex]Q_c[/tex] is 9.07

  • For 3:

Taking equilibrium constant as 10.24 for calculating the equilibrium concentration of A.

[tex]K_c=10.24[/tex]

[tex][B]_{eq}=\frac{0.60}{2.00}=0.3[/tex]

[tex][C]_{eq}=\frac{1.70}{2.00}=0.85[/tex]

[tex][D]_{eq}=\frac{1.60}{2.00}=0.8[/tex]

Putting values in expression 1, we get:

[tex]10.24=\frac{0.85\times 0.8}{[A]\times 0.3}[/tex]

[tex][A]_{eq}=\frac{0.85\times 0.8}{0.3\times 10.24}=0.220[/tex]

Hence, the new equilibrium concentration of A is 0.220 M

ACCESS MORE
EDU ACCESS
Universidad de Mexico