Answer:
For 1: The value of [tex]K_c[/tex] is 10.24
For 2: The value of [tex]Q_c[/tex] is 9.07
For 3: The new equilibrium concentration of A is 0.220 M
Explanation:
We are given:
Volume of the container = 2.00 L
Equilibrium moles of A = 0.50 moles
Equilibrium moles of B = 0.50 moles
Equilibrium moles of C = 1.60 moles
Equilibrium moles of D = 1.60 moles
We know that:
[tex]\text{Molarity}=\frac{\text{Moles of solute}}{\text{Volume of solution}}[/tex]
For the given chemical reaction:
[tex]A(g)+B(g)\rightleftharpoons C(g)+D(g)[/tex]
The expression of [tex]K_c[/tex] for above equation follows:
[tex]K_c=\frac{[C][D]}{[A][B]}[/tex]
We are given:
[tex][A]_{eq}=\frac{0.50}{2.00}=0.25[/tex]
[tex][B]_{eq}=\frac{0.50}{2.00}=0.25[/tex]
[tex][C]_{eq}=\frac{1.60}{2.00}=0.8[/tex]
[tex][D]_{eq}=\frac{1.60}{2.00}=0.8[/tex]
Putting values in above equation, we get:
[tex]K_c=\frac{0.8\times 0.8}{0.25\times 0.25}\\\\K_c=10.24[/tex]
Hence, the value of [tex]K_c[/tex] is 10.24
Added moles of B = 0.10 moles
Added moles of C = 0.10 moles
[tex]Q_c[/tex] is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
[tex]Q_c=\frac{[C][D]}{[A][B]}[/tex]
Now,
[tex][A]=\frac{0.50}{2.00}=0.25[/tex]
[tex][B]=\frac{0.60}{2.00}=0.3[/tex]
[tex][C]=\frac{1.70}{2.00}=0.85[/tex]
[tex][D]=\frac{1.60}{2.00}=0.8[/tex]
Putting values in above equation, we get:
[tex]Q_c=\frac{0.85\times 0.8}{0.25\times 0.3}\\\\Q_c=9.07[/tex]
Hence, the value of [tex]Q_c[/tex] is 9.07
Taking equilibrium constant as 10.24 for calculating the equilibrium concentration of A.
[tex]K_c=10.24[/tex]
[tex][B]_{eq}=\frac{0.60}{2.00}=0.3[/tex]
[tex][C]_{eq}=\frac{1.70}{2.00}=0.85[/tex]
[tex][D]_{eq}=\frac{1.60}{2.00}=0.8[/tex]
Putting values in expression 1, we get:
[tex]10.24=\frac{0.85\times 0.8}{[A]\times 0.3}[/tex]
[tex][A]_{eq}=\frac{0.85\times 0.8}{0.3\times 10.24}=0.220[/tex]
Hence, the new equilibrium concentration of A is 0.220 M