Respuesta :
Answer:
3894531 coulombs
Explanation:
1 hour = 3600 seconds
Let g = 10m/s2
The distance that the car travel at 25 m/s over an hour is
s = 25 * 3600 = 90000 m
The total mechanical energy of the car is the sum of its kinetic energy to reach 25 m/s, its potential energy to climb up 200m high hill and it work to travel a distance of s = 90000m with F = 500 N force:
[tex] \sum E = E_k + E_p + E_W[/tex]
[tex]\sum E = mv^2/2 + mgh + Fs[/tex]
[tex]\sum E = 750*25^2/2 + 750*10*200 + 500*90000 = 46734375 J[/tex]
This energy is drawn from the battery over an hour (3600 seconds), so its power must be
[tex]P = E / t = 46734375/3600 = 12982 W[/tex]
The system is 12V so its current is
[tex]I = P/U = 12982 / 12 = 1081.8 A[/tex] or 1081.8 Coulombs/s
The the total charge it needs for 1 hour (3600 s) is
C = 1081.8 * 3600 = 3894531 coulombs
The quantity of charge the batteries must be able to move is equal to 3.9 μC.
Given the following data:
- Voltage = 12.0 Volts
- Mass = 750 kg
- Speed = 25.0 m/s
- Height = 200 meters.
- Force = 500 Newton.
- Time = 1 hour = 3600 seconds.
Scientific data:
- Acceleration due to gravity = 9.8 [tex]m/s^2[/tex]
To find the quantity of charge the batteries must be able to move:
In this scenario, we would calculate the distance traveled and the total energy that is possessed by this battery-operated car.
For the distance.
Mathematically, the distance covered by an object is given by this formula:
[tex]Distance = speed \times time\\ \\ Distance = 25 \times 3600[/tex]
Distance = 90,000 meters.
For the total energy:
[tex]E = mgh + \frac{1}{2} mv^2 + Fd\\ \\ E=[750\times 9.8 \times 200] + \frac{1}{2} \times 750 \times 25^2 + [500 \times 90000]\\ \\ E=1470000+234375+45000000[/tex]
Total energy = 46,704,375 Joules.
Next, we would calculate the power consumed by this battery-operated car:
[tex]Power = \frac{Energy}{time}\\ \\ Power = \frac{46,704,375}{3600} [/tex]
Power = 12,973.44 Watts.
Also, we would calculate the current:
[tex]Current = \frac{power}{voltage} \\ \\ Current = \frac{12,973.44}{12}[/tex]
Current = 1,081.12 Amperes.
Now, we can calculate the quantity of charge the batteries must be able to move:
[tex]Q = current \times time\\ \\ Q = 1081.12 \times 3600[/tex]
Q = 3,892,032 Coulombs.
Note: 1 μC = [tex]1 \times 10^6 \;C[/tex]
Q = 3.9 μC
Read more on charge here: https://brainly.com/question/14327016