Assuming the centripetal force is provided by the Coulomb attraction between the electron and the proton we have that,
[tex]F_c = k \frac{e^2}{R^2}[/tex]
Here,
k = Coulomb's Constant
R = Distance
e = Electron charge
And by the centripetal force,
[tex]F_c = m_e R\omega^2[/tex]
[tex]m_e[/tex] = Mass of electron
R = Radius
[tex]\omega[/tex] = Angular velocity
Equation both expression,
[tex]k \frac{e^2}{R^2} = m_e R\omega^2[/tex]
Replacing,
[tex]R^3 = \frac{(9*10^9)(1.6*10^{-19})^2}{(9.11*10^{-31})(10^{6})^2}[/tex]
[tex]R^3 = 2.52908*10^{-10} m[/tex]
[tex]R = 6.32394*10^{-4}m[/tex]
Therefore the radius of the electron orbit is [tex]6.32394*10^{-4}m[/tex]